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1. Introduction

Let X1, X2, ..., Xn be random variables vith order statistics denoted by

Xl1: n < X 2:n < .... _ Xn:n . Bounds on the expected values of order statistics

vhen the XI are iid vith finite mean V and finite variance 2 are vell knovn and

given in David (1981, Chapter 3). Arnold and Groeneveld (1979) have derived

bounds for expectations of order statistics vhen the identical and independence

conditions for the distributions are dropped. Define v g:n to be E[X gn ] for

g-l ....,n then the Arnold and Groeneveld bound is:

(1) i- Iz + E'lzi_5)2I P~ + 10 2i~ i + EUi -i) 2 -
n-g J g:n L(ai j n(n-g+l)j

vhere the summations are from 1 to n and the bars denote means. When * a u and

* M2 for all i then (1) becomes

(2) Sj. (n Ug n < g+ -g< j) %

In this paper, nev bounds for expected values of order statistics are

proposed vhich do not require finite variances and can take into account known

dependence among subsets of k variables for k < n.

2. The New Bounds

From here on, let S be a set of k-1 integers from 1,2,..., J-1 for j > k.

Let J, < J2 < ... < Jk-1 be the integers in S . Nov an obvious fact is stated.

FACT 1:

For any j - k+l,.••,n;

Max(xj 'J' xj2'* xjk-1 ax(x1 OxJ2) 'X Jk-1 0

This fact is used to prove the folloving lemma.

LEMMA 1:

(3) Max (x1, x2,..., xn ) _ Max (x1 , x2,..., xk) +



n [
SIax(xj ,..., ) - Max (x , x J..., i

j=k+l[ x lx2 Jk-i ' 1 J2

Proof -Let n be the smallest integer such that xn -Max (xlX 2,...,X)
.

CASE I -n <. k

Then Max (x1,..., X ) * xn w Max (xl,...,xk) and from fact 1, it follovs

that (3) holds.

CASE II k < n* < n

* 

Then Max (x 1,... x n  n Max(xl,...,xk) E Max(x,...,xj)
-k. 1

- Max(x1, ... xj 1 )]

*°
Max (xl,...,Xk) L -0 if xj <Max (xi.... X

j=k+l j - Max(xi,...,xj_ 1 )  otherwise

< Max (Xl,..,Xk) 0 if xj S Max (Xjl,... , x

J-k+ - Max(xi l ...,k) otherwisenM Hax (xl,...,xk) + Z ax(xj, xJ .... x - Hax(x i...,xj)
j-k+l J J J- 1 Jk-1

(by FACT 1)

< Max (xl,...,xk) +E [Max(xj,xj ,... ) - Max(x , ...,xj-k+1J l Jk-1 J1 Jk-1

THEOREM 1:

An upper bound Uk(Un:n) for Un:n is given by:

n

(4) u n:n <Uk(Un:n) -E[Ma(Xl,...,Xk)J + E [E[Max(Xi, Xjl,...,X I
jmk+l

-(Mx(~ ,...,X~ )I]
E[Max(Xj I . Jk-i

Provided the above expectations are all defined and finite.



Proof: Taking expectations over (3)

All of the expectations in (4) viii be defined and finite if ui is finite

for all i-1,...,n. These expectations may be defined and finite under other

circumstances as well. Note that this bound does not require finite variances.

The concept behind this theorem is similar to that of the Bonferroni

inequalities. If each variable X takes on only the values 0 and 1 then Xn:n

n
can be thought of as U (Ei) where Ei is the event that Xi - 1. When this is

i-1

the case, the bound given by (4) is the same as the SCAUB improved Bonferroni

bound presented in Hoover (1988).

No matter what the ordering of variables X1, X2 ,...,Xn or choice of

elements Jl < J2 < ...< Jk- in Sj: j=k+l,..., n, (4) is an upper bound. The

value of this upper bound does, however, depend on the ordering of variables and

choice of elements. In general, the bound given by (4) will be lover if for all

j-k~l,..., n: (i) The variables represented in S have a high positive

correlation with variable X and/or (ii) The variables represented in S are

very likely to contain the maximum value from X1, X2,..., Xj.

Nov a lover bound for Ul:n is given

COROLLARY 1.1:

If all values in (5) are defined and finite, which will be true if Ui is

finite for all i, then one can produce Lk(ul:n), a lover bound for Ul:n' of the

following form:

n

(5) Ul:n Lk(Ul:n) - E[Hin(XI,...,Xk)] + E [E[Iin(Xj' Xl,...,Xk )I
1 k i=k+l 

ii j]

-E[Min(X j, •..' • • ,X j )]]



Corollary 1.1 immediately follovs from applying Theorem 1 to (-Xl,..., -Xn).

The Range of (X 1,..X n ) is defined as Max(X1,...,Xn) - Min(Xi,...,Xn) -

Xn:n - X n:1  Refer to this as r . Then an upper bound for E[r n] is given belov.

COROLLARY 1.2:

If all values in (6) are defined and finite, vhich will be true if Pi is

finite for all i, then one can produce Uk(rn), an upper bound for E[rn 1, of the

folloving form:

n
(6) E[r n ]  Uk(rn) - E[Range(Xl,...,Xk)J + 1 [E[Range(Xj, Xj ,...,Xk

Ju=k+l i

- E(Range(X l,..., XJk-1

Proof:

(By Theorem 1 and Corollary 1.1)

Ejrn] - Un:n - 1I:n (4) - (5) = (6)

It will nov be shown that increasing k, the size of the subset, sharpens

the bounds given by Theorem 1 and its corollaries 1.1 and 1.2.

THEOREM 2

As before, let S be a set of k-1 integers (jl < j2 < "'.< Jk-1 ) from

1,2,..., J-1 for j k+1. Nov let k' - k+1 and S' be a set of k integers from

1,2,..., J-1 for j I k'+1 a k+2, vith S' D S . Let - be the unique integer in
j F

St vhich is not in S . Finally, define U1(Un:n) to be the upper bound (4)
3 J*
corresponding to S1, Lf(ul:n) to be the lover bound (5) corresponding to S! and

Uk(r n) to be the upper bound (6) corresponding to St. As before, assume all

expectations are defined and finite. Then:

Mi onwn U k'(Un:n) Uk(Un:n)



(ii) U 1:n a hk'(Ul:n ) a Lk(Ul:n)

(iii) E~rn] I U k'(r n) Uk(r n)

Proof of (i)

FACT 2: for all a,b,c

* [Max(ab,c) - Max(a,b)] - [Max(b,c) - (b)] -

1 0 if c < Max(a,b)1 0 if c < bi
c-Max(a,b) if c > Max(a, I -b if c > b][0 if c, ~b0 i b > a < 0 and thus, whenever it is defined:bif c>ba]
b-a if c > a>; b
b-c if a> c > b

E[Max(A,B,C) - Max(A,B)] - E[Max(B,C) - (B)J < 0

but if S+ is defined to be (1,2,...,k) and (k:l) is defined to be the

unique integer from (1,2,...,k) which is not in Sk+1' then:

Uk'(Un:n ) - Uk(Un:n) can be written as

r E(Max(Aj, B1, C1) - Max(Aj, B1 )] - E[Max(B., C.) (B)] ]

j=k+l

which by Fact 2 is a summation of nonpositive terms and thus must be

nonpositive

where C =X

B - Uax (X4 , XJ2,..., XJk4  ) For J1' j2' "... Jk-1 C Si

Aj - X where j is the element in S' which

is not in S

Proofs of (ii) and (iii) follow from (i) in the same fashion that the proofs of

Corollaries 1.1 and 1.2 followed from Theorem 1.

Finally, Theorem 1 and Corollary 1.1 can be extended to produce upper and

lover bounds for E(X g:nI where k < g < n-k+1



THEOREM 3:

Upper and lover bounds for u g:n are

(7) u g:n S Ug:g Any upper bound for Ug:g given by (4) under the assumptions

of Theorem 1.

(8) Ug:n Ul:n-g+l I Any lover bound for Ul:n-g+l given by (5) under the

assumptions of Corollary 1.1.

Proof

Xg:n - Xg:g iff xg:g < Min(xg+l,...,xn) . Othervise Xg:g > Xg:n. Taking

expectations yields the inequalities in (7). The proof of (8) is similar.

3. Example of Upper Bound for Vn:n

Let e be a random angle vith f(e) = L for -n<6<n and let X Cos(e), X
2n -n( n e o~) 2

= Cos(SI.C), X3 - Cos(So+2c),..., Xn w Cos(O+(n-1)c) for c > 0. Then by (3) vith

k=2 and J, = J-1 for j=3,...,n, it follovs that

Un: n  U2 ( )n:n) E[Hax(X1 ,X2 )] + j E [Max(Xj, Xj_)- E[Xjj]

(Since EIX J = 0 for all J)

n
= j 2EMax(Xj, XJI..)1J-2

(invariance)
* (n-1) E[Max(XI , X2 )]

(9) = (n-1) EIMax(Cos(e), Cos(O€c))]

(symmetry)
* (n-) 2 E[Cos() I(cos() > cos(e)

* 4(n1) ,1-cos(c)

(10) 4(n-1) I sin(arctan (sin(c) ))l2n10) 2c



For all values of n and t, it is possible to 'compute (10) vith a hand

calculator and easy to obtain. (9) by evaluating a single integral vith a

computer. At the same time, to calculate the exact value of un:n would require

a more difficult integration than needed for (9). Clearly a lover bound for

n: n is E[Max(Xl, Xn) ]. Table 1 gives upper and lover bounds for Un:n when

C - n/180 for various values of n.

Table 1

Upper and Lower Bounds for the

E[Max(Cos(e), Cos(e + .. Co),..., (e + 1 where

1
f(e) -1 : - n < e< n

Lower Bound Upper Bounds

n-i) E[Hax(cos(e), cos(e + (n-1) (9) or.(10) Arnold & Groeneveld
180

5 0.027769 0.027778 1.581139
10 0.055488 0.055556 2.236068
50 0.269051 0.277778 5.000000
90 0.450111 0.500000 6.708204

For this problem, Arnold and Groeneveld's distribution free bounds are

always larger than 1.0, the maximum value a cosine function can take, and thus

unsatisfactory. On the other hand, the new upper bounds proposed in this paper

which incorporate knovn dependencies are quite sharp, even for large n, as is

indicated by their closeness to the lover bounds.
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